OM NAMO CHEMISTRY Image Map

Sunday 11 January 2015

Aldehydes, Ketones and Carboxylic Acids


   Aldehydes, Ketones and Carboxylic Acids
Topics:Nomenclature and Structure of Carbonyl Group
Nomenclature
http://www.meritnation.com/img/lp/1/12/5/271/959/2058/2020/15-6-09_LP_Sujata_Chem_1.12.5.12.1.1_Utpal_LVN_html_m70fecd34.png
Common Names of Aldehydes
  • Often called by their common names instead of IUPAC names
  • Derived from the common names of the carboxylic acids by replacing the ending ‘−ic’ of the acid with aldehyde
  • Location of the substituent in the carbon chain is indicated by the Greek letters α, β, γ, δ, etc.
  • Example:
http://www.meritnation.com/img/lp/1/12/5/271/959/2058/2020/15-6-09_LP_Sujata_Chem_1.12.5.12.1.1_Utpal_LVN_html_mc8f7756.png
Common Names of Ketones
  • Derived by naming two alkyl or aryl groups bonded to the carbonyl group
  • Locations of substituents are indicated by the Greek Letters, α, α′, β, β′, and so on 
  • The simplest dimethyl ketone is called acetone.
  • Alkyl phenyl ketones are usually named by adding the acyl group as prefix to phenone.
http://www.meritnation.com/img/lp/1/12/5/271/959/2058/2020/15-6-09_LP_Sujata_Chem_1.12.5.12.1.1_Utpal_LVN_html_m16e91085.png
IUPAC Names
  • For open-chain aliphatic aldehydes and ketones, IUPAC names are derived from the names of the corresponding alkanes by replacing the ending ‘−e’ with ‘−al’ and ‘−one’ respectively.
  • In the case of aldehydes, the longest chain is numbered starting from the carbon of the aldehydic group.
  • In the case of ketones, the numbering begins from the end nearer to the carbonyl group.
  • Substituents are prefixed in the alphabetical order along with the numerals indicating their positions in the carbon chain.
  • Same rule is applicable to cyclic ketones.
  • If the aldehydic group is attached to a ring, then the suffix carbaldehyde is added to the full name of cyclohexane.
Example:
http://www.meritnation.com/img/lp/1/12/5/271/959/2058/2020/15-6-09_LP_Sujata_Chem_1.12.5.12.1.1_Utpal_LVN_html_m4fdf88c1.png
  • The common name benzaldehyde is also accepted by IUPAC.
  • Common and IUPAC names of some aldehydes and ketones are listed in the given table.
Structure
Common name
IUPAC name
Aldehydes


HCHO
Formaldehyde
Methanal
CH3CHO
Acetaldehyde
Ethanal
(CH3)2CHCHO 
Isobutyraldehyde
2-Methylpropanal
http://www.meritnation.com/img/lp/1/12/5/271/959/2058/2020/15-6-09_LP_Sujata_Chem_1.12.5.12.1.1_Utpal_LVN_html_12c6c35a.png
γ-Methylcyclohexane
3-Methylcyclohexanecarbaldehyde
CH3CH(OCH3)CHO 
α-Methoxypropionaldehyde
2-Methoxypropanal
CH3CH2CH2CH2CHO
Valeraldehyde
Pentanal
CH2= CHCHO 
Acrolein
Prop-2-enal
http://www.meritnation.com/img/lp/1/12/5/271/959/2058/2020/15-6-09_LP_Sujata_Chem_1.12.5.12.1.1_Utpal_LVN_html_2e81a01d.png
Phthaldehyde
Benzene-1,2-dicarbaldehyde
http://www.meritnation.com/img/lp/1/12/5/271/959/2058/2020/15-6-09_LP_Sujata_Chem_1.12.5.12.1.1_Utpal_LVN_html_64af9eb4.png
m-Bromophthaldehyde
3-Bromobenzene-1,2-dicarbaldehyde
Ketones


CH3COCH2CH2CH3
Methyl n-propyl ketone 
Pentan-2-one
(CH3)2CHCOCH(CH3)2
Diisopropyl ketone
2,4-Dimethylpentan-3-one
http://www.meritnation.com/img/lp/1/12/5/271/959/2058/2020/15-6-09_LP_Sujata_Chem_1.12.5.12.1.1_Utpal_LVN_html_557ae1be.png
α-Methylcyclohexanone 
2-Methylcyclohexanone
(CH3)2C=CHCOCH3
Mesityl oxide
4-Methylpent-3-en-2-one
Structure of Carbonyl Group
  • Carbonyl carbon atom is sp2 hybridised. 
  • It forms three sigma (σ) bonds and one pi (π) bond.
  • The π bond is formed with oxygen by overlap with p-orbital of an oxygen atom.
  • Oxygen atom has two non-bonding electron pairs.
  • Carbonyl carbon and the three atoms attached to it lie in the same plane.
  • π-electron cloud is above and below the plane.
  • Bond angles are approximately 120° as is expected of a trigonal co-planar structure.
  • Orbital diagram for the formation of carbonyl group is as follows:
http://www.meritnation.com/img/lp/1/12/5/271/959/2058/2020/15-6-09_LP_Sujata_Chem_1.12.5.12.1.1_Utpal_LVN_html_6578df73.png
  • C=O double bond is polarised due to higher electronegativity of oxygen relative to carbon.
  • Carbonyl carbon − an electrophile (Lewis acid)
  • Carbonyl oxygen − a nucleophile (Lewis base)
  • High polarity of the carbonyl group is explained on the basis of resonance involving neutral (A) and dipolar (B) structures as shown below.
http://www.meritnation.com/img/lp/1/12/5/271/959/2058/2020/15-6-09_LP_Sujata_Chem_1.12.5.12.1.1_Utpal_LVN_html_580f1b54.png
Example :
The correct structure for 3-Propylcyclohexanecarbaldehyde is

  • A )
http://www.meritnation.com/img/directq/1.12.5.2.12.1.1/NEET_12_Chemistry_SE_Chap12_12_Anand_Shukla_ADCoA_html_m7c99d0ad.png
  • B )
http://www.meritnation.com/img/directq/1.12.5.2.12.1.1/NEET_12_Chemistry_SE_Chap12_12_Anand_Shukla_ADCoA_html_m177df882.png
  • C )
http://www.meritnation.com/img/directq/1.12.5.2.12.1.1/NEET_12_Chemistry_SE_Chap12_12_Anand_Shukla_ADCoA_html_m68ef3907.png
  • D )
http://www.meritnation.com/img/directq/1.12.5.2.12.1.1/NEET_12_Chemistry_SE_Chap12_12_Anand_Shukla_ADCoA_html_m54bcebbc.png
http://www.meritnation.com/img/directq/1.12.5.2.12.1.1/NEET_12_Chemistry_SE_Chap12_12_Anand_Shukla_ADCoA_html_3fd48246.png
The suffix ‘carbaldehyde’ is added to an aldehyde group attached to a ring. The numbering of carbon atoms constituting the ring start from the carbon atom attached to the aldehyde group.


Example :
Which of the following statements is not correct for carbonyl group > C = O?

  • A )
C − O bond is polar in nature.
  • B )
Bond angles are 120o with trigonal planar structure.
  • C )
C is sp2 hybridized and forms 3σ bonds and 1π bond.
  • D )
C acts as Lewis basic centre and O acts as Lewis acidic centre.
Carbon − oxygen bond is polar due to higher electronegativity of oxygen. So, C gets partial positive charge and O gets partial negative charge i.e. C becomes electron deficient or Lewis acid and acts as an electrophilic centre while O becomes electron rich or Lewis base and acts as a nucleophilic centre.


Example :
Which of the following pairs of compounds reacts together to formhttp://www.meritnation.com/img/directq/1.12.5.2.12.1.1/NEET_12_Chemistry_SE_Chap12_12_Anand_Shukla_ADCoA_html_m2efaa2e6.png ?

  • A )
http://www.meritnation.com/img/directq/1.12.5.2.12.1.1/NEET_12_Chemistry_SE_Chap12_12_Anand_Shukla_ADCoA_html_m81376e1.png and Cr2O2Cl2 in CS2
  • B )
 and CrO2Cl2 in CS2
  • C )
http://www.meritnation.com/img/directq/1.12.5.2.12.1.1/NEET_12_Chemistry_SE_Chap12_12_Anand_Shukla_ADCoA_html_m48c863cd.png and CrO3 in (CH3CO) 2O
  • D )
http://www.meritnation.com/img/directq/1.12.5.2.12.1.1/NEET_12_Chemistry_SE_Chap12_12_Anand_Shukla_ADCoA_html_m81376e1.png and CrO3 in (CH3CO) 2O
http://www.meritnation.com/img/directq/1.12.5.2.12.1.1/NEET_12_Chemistry_SE_Chap12_12_Anand_Shukla_ADCoA_html_m58684de2.png
The reaction shown above is Etard reaction in which chromyl chloride (CrO2Cl2) in CS2 oxidises − CH3 to intermediate chromium complex. The structure of the complex is as follows.
http://www.meritnation.com/img/directq/1.12.5.2.12.1.1/NEET_12_Chemistry_SE_Chap12_12_Anand_Shukla_ADCoA_html_650fe421.png
On hydrolysis, the above compound gives benzaldehyde.
Topics:Preparation of Aldehydes and Ketones
Important Methods for the Preparation of Aldehydes and Ketones
  • By oxidation of alcohols
Primary alcohols http://www.meritnation.com/img/lp/1/12/5/271/959/2059/2008/11-6-09_LP_Sujata_Chem_1.12.5.12.1.2_Utpal_SS_html_6e77f44c.gifAldehydes
Secondary alcohols http://www.meritnation.com/img/lp/1/12/5/271/959/2059/2008/11-6-09_LP_Sujata_Chem_1.12.5.12.1.2_Utpal_SS_html_6e77f44c.gifKetones
  • By dehydrogenation of alcohols
Primary alcohols http://www.meritnation.com/img/lp/1/12/5/271/959/2059/2008/11-6-09_LP_Sujata_Chem_1.12.5.12.1.2_Utpal_SS_html_5e11ad56.gifAldehydes
Secondary alcohols http://www.meritnation.com/img/lp/1/12/5/271/959/2059/2008/11-6-09_LP_Sujata_Chem_1.12.5.12.1.2_Utpal_SS_html_5e11ad56.gif Ketones
  • From hydrocarbons
  • Ozonolysis of alkenes followed by reaction with Zn dust and water gives aldehydes, ketones, or a mixture of both, depending upon the substitution pattern of the alkene.
  • Hydration of alkynes
http://www.meritnation.com/img/lp/1/12/5/271/959/2059/2008/11-6-09_LP_Sujata_Chem_1.12.5.12.1.2_Utpal_SS_html_m7755f394.png
Other alkynes give ketones in this reaction.
Preparation of Aldehydes
  • From acyl chloride (acid chloride)
http://www.meritnation.com/img/lp/1/12/5/271/959/2059/2008/11-6-09_LP_Sujata_Chem_1.12.5.12.1.2_Utpal_SS_html_5bcd2cec.png
  • This reaction is called Rosenmund reduction.
  • Example:
http://www.meritnation.com/img/lp/1/12/5/271/959/2059/2008/11-6-09_LP_Sujata_Chem_1.12.5.12.1.2_Utpal_SS_html_400fa9f4.png
  • From Nitriles
    • http://www.meritnation.com/img/lp/1/12/5/271/959/2059/2008/11-6-09_LP_Sujata_Chem_1.12.5.12.1.2_Utpal_SS_html_m32e67acb.gif
This reaction is called Stephen reaction.
  • http://www.meritnation.com/img/lp/1/12/5/271/959/2059/2008/11-6-09_LP_Sujata_Chem_1.12.5.12.1.2_Utpal_SS_html_67f3acbc.gif
Example:http://www.meritnation.com/img/lp/1/12/5/271/959/2059/2008/11-6-09_LP_Sujata_Chem_1.12.5.12.1.2_Utpal_SS_html_799bd687.gif
  • From esters
http://www.meritnation.com/img/lp/1/12/5/271/959/2059/2008/11-6-09_LP_Sujata_Chem_1.12.5.12.1.2_Utpal_SS_html_ae0caa7.gif
  • Example:
http://www.meritnation.com/img/lp/1/12/5/271/959/2059/2008/11-6-09_LP_Sujata_Chem_1.12.5.12.1.2_Utpal_SS_html_904ed6c.png
  • From hydrocarbons
  • By oxidation of methyl benzene and its derivative using chromyl chloride (CrO2Cl2)
http://www.meritnation.com/img/lp/1/12/5/271/959/2059/2008/11-6-09_LP_Sujata_Chem_1.12.5.12.1.2_Utpal_SS_html_247c2328.png
This reaction is called Etard reaction.
  • By oxidation of methyl benzene and its derivative using chromic oxide (CrO3) in acetic anhydride
http://www.meritnation.com/img/lp/1/12/5/271/959/2059/2008/11-6-09_LP_Sujata_Chem_1.12.5.12.1.2_Utpal_SS_html_58c6e3d7.png
  • By side chain chlorination followed by hydrolysis
http://www.meritnation.com/img/lp/1/12/5/271/959/2059/2008/11-6-09_LP_Sujata_Chem_1.12.5.12.1.2_Utpal_SS_html_m748bd9d6.png
  • By Gatterman-Koch reaction

http://www.meritnation.com/img/lp/1/12/5/271/959/2059/2008/11-6-09_LP_Sujata_Chem_1.12.5.12.1.2_Utpal_SS_html_m39e165f6.png
Preparation of Ketones
  • From acyl chlorides
Treatment of acyl chlorides with dialkylcadmium gives ketones.
http://www.meritnation.com/img/lp/1/12/5/271/959/2059/2008/11-6-09_LP_Sujata_Chem_1.12.5.12.1.2_Utpal_SS_html_19c0597c.gif
http://www.meritnation.com/img/lp/1/12/5/271/959/2059/2008/11-6-09_LP_Sujata_Chem_1.12.5.12.1.2_Utpal_SS_html_47a6d241.png
  • From nitriles
Treatment of nitrile with Grignard reagent followed by hydrolysis gives a ketone.
http://www.meritnation.com/img/lp/1/12/5/271/959/2059/2008/11-6-09_LP_Sujata_Chem_1.12.5.12.1.2_Utpal_SS_html_m4b6d4193.png
  • From benzene or substituted benzene (Friedel-Craft acylation reaction)
Treatment of benzene or substituted benzene with acid chloride in presence of anhydrous aluminum chloride gives ketone.
http://www.meritnation.com/img/lp/1/12/5/271/959/2059/2008/11-6-09_LP_Sujata_Chem_1.12.5.12.1.2_Utpal_SS_html_63fd46ca.png


Example :
Consider the following reaction.
http://www.meritnation.com/img/directq/1.12.5.2.12.1.2/NEET_12_Chemistry_SE_Chap12_12_Anand_Shukla_ADCoA_html_51bd36e8.png
The structure of the product M is

  • A )
http://www.meritnation.com/img/directq/1.12.5.2.12.1.2/NEET_12_Chemistry_SE_Chap12_12_Anand_Shukla_ADCoA_html_m3c76728.png
  • B )
http://www.meritnation.com/img/directq/1.12.5.2.12.1.2/NEET_12_Chemistry_SE_Chap12_12_Anand_Shukla_ADCoA_html_6b29a199.png
  • C )
http://www.meritnation.com/img/directq/1.12.5.2.12.1.2/NEET_12_Chemistry_SE_Chap12_12_Anand_Shukla_ADCoA_html_46f5d0e5.png
  • D )
http://www.meritnation.com/img/directq/1.12.5.2.12.1.2/NEET_12_Chemistry_SE_Chap12_12_Anand_Shukla_ADCoA_html_m5d630e36.png
The given reaction is
http://www.meritnation.com/img/directq/1.12.5.2.12.1.2/NEET_12_Chemistry_SE_Chap12_12_Anand_Shukla_ADCoA_html_m7b301e77.gif
Nitriles (RCN) can be reduced by DIBAL − H (Diisobutylaluminium hydride) to imine followed by hydrolysis to aldehyde. DIBAL − H does not act upon C = C and hence, prevents its reduction
Topics:Aldehydes and Ketones - Physical Properties & Chemical Reactions - I
Physical Properties of Aldehydes and Ketones
  • Methanal − Gas at room temperature
  • Ethanal − Volatile liquid
  • Other aldehydes and ketones − Liquid or solid at room temperature
  • Boling points of aldehydes and ketones are higher than those of hydrocarbons and ethers of comparable molecular masses.
    • Reason: Weak molecular association in aldehydes and ketones, arising out of the dipole−dipole interactions
      • Boiling points of aldehydes and ketones are lower than those of alcohols of similar molecular masses.
        • Reason: Absence of intermolecular hydrogen bonding
  • Lower members of aldehydes and ketones are miscible with water in all proportions.
    • Reason: They form hydrogen bonds with water.
http://www.meritnation.com/img/lp/1/12/5/271/959/2060/2015/12-06-09_LP_Sujata_Chem._1.12.5.12.1.3_Utpal_LVN_html_m67c9f0ac.png
  • Solubility of aldehydes and ketones decreases rapidly on increasing the length of the alkyl chain.
  • All aldehydes and ketones are fairly soluble in organic solvents such as ether, methanol, etc.
  • Lower aldehydes have sharp pungent odours.
  • As the size of aldehydes increases, the odour becomes less pungent and more fragrant.
Chemical Reactions − I
Nucleophilic Addition Reaction
  • Mechanism
http://www.meritnation.com/img/lp/1/12/5/271/959/2060/2015/12-06-09_LP_Sujata_Chem._1.12.5.12.1.3_Utpal_LVN_html_607a63ce.png
  • Nucleophile (Nu) attacks the carbonyl group perpendicular to the plane of sphybridised orbitals of carbonyl carbon.
  • In the process, hybridisation of carbon changes from sp2 to sp3.
  • A tetrahedral alkoxide is formed as intermediate.
  • Reactivity
Aldehydes are more reactive than ketones in nucleophilic addition reactions.
    • Reason: Steric and electronic reasons
  • Examples:
  • Addition of hydrogen cyanide (HCN)
http://www.meritnation.com/img/lp/1/12/5/271/959/2060/2015/12-06-09_LP_Sujata_Chem._1.12.5.12.1.3_Utpal_LVN_html_m5e95be4b.gif
http://www.meritnation.com/img/lp/1/12/5/271/959/2060/2015/12-06-09_LP_Sujata_Chem._1.12.5.12.1.3_Utpal_LVN_html_70006d11.png
  • Addition of sodium hydrogen sulphite (NaHSO3)
http://www.meritnation.com/img/lp/1/12/5/271/959/2060/2015/12-06-09_LP_Sujata_Chem._1.12.5.12.1.3_Utpal_LVN_html_5203d83b.png
  • Addition of alcohols
http://www.meritnation.com/img/lp/1/12/5/271/959/2060/2015/12-06-09_LP_Sujata_Chem._1.12.5.12.1.3_Utpal_LVN_html_ma9b9643.png
  • Addition of ammonia and its derivatives
http://www.meritnation.com/img/lp/1/12/5/271/959/2060/2015/12-06-09_LP_Sujata_Chem._1.12.5.12.1.3_Utpal_LVN_html_m5cd9b7d3.png
Z = alkyl, aryl, OH, NH3, C6H5NH, NHCONH2, etc.
  • Addition of Grignard reagents
http://www.meritnation.com/img/lp/1/12/5/271/959/2060/2015/12-06-09_LP_Sujata_Chem._1.12.5.12.1.3_Utpal_LVN_html_7a58414e.png
Reduction reactions
  • Reduction to alcohols
Aldehydes http://www.meritnation.com/img/lp/1/12/5/271/959/2060/2015/12-06-09_LP_Sujata_Chem._1.12.5.12.1.3_Utpal_LVN_html_m8695a7d.gif Primary alcohols
Ketones http://www.meritnation.com/img/lp/1/12/5/271/959/2060/2015/12-06-09_LP_Sujata_Chem._1.12.5.12.1.3_Utpal_LVN_html_m8695a7d.gif Secondary alcohols
  • Reduction to hydrocarbons
  • Clemmensen reduction
http://www.meritnation.com/img/lp/1/12/5/271/959/2060/2015/12-06-09_LP_Sujata_Chem._1.12.5.12.1.3_Utpal_LVN_html_m406abe64.png
  • Wolf−Kishner reduction
http://www.meritnation.com/img/lp/1/12/5/271/959/2060/2015/12-06-09_LP_Sujata_Chem._1.12.5.12.1.3_Utpal_LVN_html_m7c244afb.png
Oxidation reactions
  • Aldehydes are oxidised to carboxylic acids by common oxidising agents such as KMnO4, HNO3, K2Cr2O7, etc.
http://www.meritnation.com/img/lp/1/12/5/271/959/2060/2015/12-06-09_LP_Sujata_Chem._1.12.5.12.1.3_Utpal_LVN_html_m67c6d9d3.gif
  • Aldehydes are also oxidised by mild oxidising agents such as Tollen’s reagent and Fehling’s reagent. On the other hand, ketones are not oxidised by mild oxidising agents.
  • Ketones are oxidised under vigorous conditions, i.e., by strong oxidising agents and at elevated temperatures. It involves carbon−carbon bond cleavage.
  • Tollen’s test
http://www.meritnation.com/img/lp/1/12/5/271/959/2060/2015/12-06-09_LP_Sujata_Chem._1.12.5.12.1.3_Utpal_LVN_html_m5668328d.gif
  • Fehling’s Test
http://www.meritnation.com/img/lp/1/12/5/271/959/2060/2015/12-06-09_LP_Sujata_Chem._1.12.5.12.1.3_Utpal_LVN_html_m6af1f8b5.gif
  • Oxidation of methyl ketones by haloform reaction
http://www.meritnation.com/img/lp/1/12/5/271/959/2060/2015/12-06-09_LP_Sujata_Chem._1.12.5.12.1.3_Utpal_LVN_html_m5a693349.png


Example :
Consider the following reaction.
http://www.meritnation.com/img/directq/1.12.5.2.12.1.3/NEET_12_Chemistry_SE_Chap12_12_Anand_Shukla_ADCoA_html_30c1f8b.gif
The product Z is

  • A )
(C2H5) 2 C(OH) COOH
  • B )
http://www.meritnation.com/img/directq/1.12.5.2.12.1.3/NEET_12_Chemistry_SE_Chap12_12_Anand_Shukla_ADCoA_html_950f24d.png
  • C )
HOCH2CH(CH3) COOH
  • D )
CH3 CH2 CH = CHCHCOOH
http://www.meritnation.com/img/directq/1.12.5.2.12.1.3/NEET_12_Chemistry_SE_Chap12_12_Anand_Shukla_ADCoA_html_950f24d.png
http://www.meritnation.com/img/directq/1.12.5.2.12.1.3/NEET_12_Chemistry_SE_Chap12_12_Anand_Shukla_ADCoA_html_m1866faa.png


Example :
Consider the following reaction.
http://www.meritnation.com/img/directq/1.12.5.2.12.1.3/NEET_12_Chemistry_SE_Chap12_12_Anand_Shukla_ADCoA_html_m7084f390.png
The electrophilicity of the carbonyl carbon increases due to

  • A )
both dry HCl gas and dilute HCl
  • B )
neither dry HCl gas nor dilute HCl
  • C )
only dry HCl gas
  • D )
only dilute HCl
The proton, H+ of dry HCl gas protonates the oxygen of carbonyl compounds.http://www.meritnation.com/img/directq/1.12.5.2.12.1.3/NEET_12_Chemistry_SE_Chap12_12_Anand_Shukla_ADCoA_html_m35ccd04e.png
It increases the electrophilicity of the carbonyl carbon that enhances the chance of nucleophilic attack of ethylene glycol to give ethylene glycol ketal. Dilute HCl makes the reaction proceed in the reverse direction.
Topics:Reactions Due to α-Hydrogen & Uses of Aldehydes and Ketones
Reactions due to α-Hydrogen
  • α-Hydrogen of aldehydes and ketones are acidic: They undergo a number of reactions due to the acidic nature of α-hydrogen.
  • Reason for the acidity of α-hydrogen: Strong electron-withdrawing effect of the carbonyl group, and resonance stabilisation of the conjugate base
http://www.meritnation.com/img/lp/1/12/5/271/959/2061/2017/12-6-09_LP_Sujata_Chem_1.12.5.12.1.4_Utpal_LVN_html_m1d316725.png
  • Aldol condensation (or aldol reaction)
Aldehydes and ketones with at least one α-hydrogen undergo a reaction in the presence of dilute alkali as catalyst.
http://www.meritnation.com/img/lp/1/12/5/271/959/2061/2017/12-6-09_LP_Sujata_Chem_1.12.5.12.1.4_Utpal_LVN_html_214307b2.png
http://www.meritnation.com/img/lp/1/12/5/271/959/2061/2017/12-6-09_LP_Sujata_Chem_1.12.5.12.1.4_Utpal_LVN_html_7432eabd.png
  • Cross-aldol condensation: Aldol condensation carried out between two different aldehydes and/or ketones
  • If both of them contain α-hydrogen atoms, then it gives a mixture of four products.
http://www.meritnation.com/img/editlive_lp/6/2012_06_01_15_42_18/4.1.png
  • Ketones can also be used as one component in cross-aldol reactions.
http://www.meritnation.com/img/lp/1/12/5/271/959/2061/2017/12-6-09_LP_Sujata_Chem_1.12.5.12.1.4_Utpal_LVN_html_1037fc23.png
Other Reactions
  • Cannizaro reaction
  • Aldehydes which do not have an α-hydrogen atom, undergo self oxidation and reduction (disproportionation) reaction on treatment with a concentrated alkali.
  • Example:
http://www.meritnation.com/img/lp/1/12/5/271/959/2061/2017/12-6-09_LP_Sujata_Chem_1.12.5.12.1.4_Utpal_LVN_html_m33332a25.png
  • Electrophilic substitution reaction
  • Aromatic aldehydes and ketones undergo electrophilic substitutions at the ring.
  • Carbonyl group acts as a deactivating and meta-directing group.
http://www.meritnation.com/img/lp/1/12/5/271/959/2061/2017/12-6-09_LP_Sujata_Chem_1.12.5.12.1.4_Utpal_LVN_html_m6d8a90b4.png
Uses of Aldehydes and Ketones
  • As solvents
  • As starting materials and reagents for the synthesis of other products
  • Formaldehyde {formation (40%) solution}− Used for preserving biological specimens, bakelite, urea formaldehyde glues and other polymers products
  • Acetaldehyde − In the manufacture of acetic acid, ethyl acetate, vinyl acetate, polymers and drugs
  • Benzaldehyde − In perfumery and in dye industries
  • Butyraldehyde, vanillin, camphor, etc., are well known for their odours and flavours
  • Acetone and ethyl methyl ketone − Common industrial solvents


Example :
Consider the following reaction.
http://www.meritnation.com/img/directq/1.12.5.2.12.1.4/NEET_12_Chemistry_SE_Chap12_12_Anand_Shukla_ADCoA_html_489d02c4.png
What is the IUPAC name of the final product?

  • A )
1, 2 − Diphenylprop − 2 − en − 1 − one
  • B )
2, 2 − Diphenylprop − 2 − en − 1 − one
  • C )
3, 3 − Diphenylprop − 2 − en − 1 − one
  • D )
1, 3 − Diphenylprop − 2 − en − 1 − one
http://www.meritnation.com/img/directq/1.12.5.2.12.1.4/NEET_12_Chemistry_SE_Chap12_12_Anand_Shukla_ADCoA_html_m5fe5d44d.png
The reaction shown above is cross aldol condensation. In this reaction, only one reactanthttp://www.meritnation.com/img/directq/1.12.5.2.12.1.4/NEET_12_Chemistry_SE_Chap12_12_Anand_Shukla_ADCoA_html_38680809.png has α − hydrogen.


Example :
Which of the following reactions is an example of disproportionation reaction?

  • A )
Wolff − Kishner reduction
  • B )
Gatterman − Koch reaction
  • C )
Cannizzaro reaction
  • D )
Stephen reaction
Cannizzaro reaction is an example of a disproportionation reaction. In this reaction, aldehydes containing α − hydrogen atom, undergo self oxidation and reduction reaction on treatment with concentrated KOH. One molecule of the aldehyde is reduced to alcohol while another is oxidised to a salt of carboxylic acid.
http://www.meritnation.com/img/directq/1.12.5.2.12.1.4/NEET_12_Chemistry_SE_Chap12_12_Anand_Shukla_ADCoA_html_m2dc4af8b.png


Example :
Suggest the suitable procedure to prepare the following compounds from CH3—CH2CHO.
(i) CH3CH2CH2CH(CH3)CHO
(ii) CH3CH2—CH=C(CH3)CHO
(iii) CH3CH2CH(OH)CH(CH3)CO2H
(iv) CH3CH2CH2CH(CH3)CH2OH
(v) CH3CH2CH=C(CH3)CH2OH  

(i)  
(ii)  http://www.meritnation.com/img/iit_pretests/direct_question/2061/Chemistry_Grade%2012_12_Aldehydes,%20Ketones%20and%20Carboxylic%20Acids_html_m26b441f1.gif
(iii) Tollen’s Reagent,  http://www.meritnation.com/img/iit_pretests/direct_question/2061/Chemistry_Grade%2012_12_Aldehydes,%20Ketones%20and%20Carboxylic%20Acids_html_fd0fa22.gif, is a specific oxidant from CHO   CO2H
http://www.meritnation.com/img/iit_pretests/direct_question/2061/Chemistry_Grade%2012_12_Aldehydes,%20Ketones%20and%20Carboxylic%20Acids_html_m10df55a8.gif
(iv)  http://www.meritnation.com/img/iit_pretests/direct_question/2061/Chemistry_Grade%2012_12_Aldehydes,%20Ketones%20and%20Carboxylic%20Acids_html_m5eba05d5.gif
(v)  http://www.meritnation.com/img/iit_pretests/direct_question/2061/Chemistry_Grade%2012_12_Aldehydes,%20Ketones%20and%20Carboxylic%20Acids_html_m3bcd4065.gif

Topics:Carboxyl Group - Nomenclature and Structure & Methods of Preparation
Nomenclature
In the IUPAC system, aliphatic carboxylic acids are named as follows:
  • By replacing the ending ‘− e’ in the name of the corresponding alkane with ‘− oic acid’
  • Carboxylic carbon is numbered one.
  • If more than one carboxyl groups are present, then the ending ‘− e’ of the alkane is retained.
  • The number of carboxyl groups is indicated by adding prefix, d, tri, etc. to the term ‘oic’.
The given table lists the common and IUPAC names and structures of some carboxylic acids.
Names and Structures of Some Carboxylic Acids
Structure
Common name
IUPAC name
HCOOH
Formic acid
Methanoic acid
CH3COOH
Acetic acid
Ethanoic acid
CH3CH2COOH
Propionic acid
Propanoic acid
CH3CH2CH2COOH
Butyric acid
Butanoic acid
(CH3)2CHCOOH
Isobutyric acid
2-Methylpropanoic acid
HOOC-COOH
Oxalic acid
Ethanedioic acid
HOOC −CH2-COOH
Malonic acid
Propanedioic acid
HOOC -(CH2)2-COOH
Succinic acid
Butanedioic acid
HOOC -(CH2)3-COOH
Glutaric acid
Pentanedioic acid
HOOC -(CH2)4-COOH
Adipic acid
Hexanedioic acid
HOOC -CH2-CH(COOH)-CH2-COOH
Propane-1, 2, 3-
tricarboxylic acid
http://www.meritnation.com/img/lp/1/12/5/271/959/2062/2012/11-6-09_LP_Sujata_Chem_1.12.5.12.1.5_Utpal_SS_html_m6188e31c.png
Benzoic acid
Benzenecarboxylic acid
(Benzoic acid)
http://www.meritnation.com/img/lp/1/12/5/271/959/2062/2012/11-6-09_LP_Sujata_Chem_1.12.5.12.1.5_Utpal_SS_html_m1c8b597f.png
Phenylacetic acid
2-Phenylethanoic acid
http://www.meritnation.com/img/lp/1/12/5/271/959/2062/2012/11-6-09_LP_Sujata_Chem_1.12.5.12.1.5_Utpal_SS_html_m6b76931c.png
Phthalic acid
Benzene-1, 2-dicarboxylic
acid
Structure of Carboxyl Group
  • Carboxyl carbon is less electrophilic than carbonyl carbon because of resonance.
http://www.meritnation.com/img/lp/1/12/5/271/959/2062/2012/11-6-09_LP_Sujata_Chem_1.12.5.12.1.5_Utpal_SS_html_m41f7bcda.png
  • Bonds to the carboxyl carbon lie in one plane and are separated by about 120°.
Methods of Preparation of Carboxylic Acid
  • From primary alcohols
http://www.meritnation.com/img/lp/1/12/5/271/959/2062/2012/11-6-09_LP_Sujata_Chem_1.12.5.12.1.5_Utpal_SS_html_m2633a2bf.gif
  • From primary aldehydes
http://www.meritnation.com/img/lp/1/12/5/271/959/2062/2012/11-6-09_LP_Sujata_Chem_1.12.5.12.1.5_Utpal_SS_html_m3ef360ca.gif
Oxidising agents − HNO3, KMnO4, K2Cr2O7
Mild oxidising agents − Tollen’s reagent and Fehling’s reagent
  • From alkyl benzenes
http://www.meritnation.com/img/lp/1/12/5/271/959/2062/2012/11-6-09_LP_Sujata_Chem_1.12.5.12.1.5_Utpal_SS_html_m74742608.gif
  • 1° and 2° alkyl benzene are oxidised in this manner.
  • Tertiary group is not affected.
http://www.meritnation.com/img/lp/1/12/5/271/959/2062/2012/11-6-09_LP_Sujata_Chem_1.12.5.12.1.5_Utpal_SS_html_7a6df7e.png
http://www.meritnation.com/img/lp/1/12/5/271/959/2062/2012/11-6-09_LP_Sujata_Chem_1.12.5.12.1.5_Utpal_SS_html_m469afcdb.png
  • From nitriles and amides
http://www.meritnation.com/img/lp/1/12/5/271/959/2062/2012/11-6-09_LP_Sujata_Chem_1.12.5.12.1.5_Utpal_SS_html_69076bd6.png
http://www.meritnation.com/img/lp/1/12/5/271/959/2062/2012/11-6-09_LP_Sujata_Chem_1.12.5.12.1.5_Utpal_SS_html_m29a20872.gif
http://www.meritnation.com/img/lp/1/12/5/271/959/2062/2012/11-6-09_LP_Sujata_Chem_1.12.5.12.1.5_Utpal_SS_html_2c08cc38.png
  • From Grignard reagents
http://www.meritnation.com/img/lp/1/12/5/271/959/2062/2012/11-6-09_LP_Sujata_Chem_1.12.5.12.1.5_Utpal_SS_html_470c0717.png
  • From acyl halides
http://www.meritnation.com/img/lp/1/12/5/271/959/2062/2012/11-6-09_LP_Sujata_Chem_1.12.5.12.1.5_Utpal_SS_html_m66bb2b1c.png
  • From acyl anhydrides
http://www.meritnation.com/img/lp/1/12/5/271/959/2062/2012/11-6-09_LP_Sujata_Chem_1.12.5.12.1.5_Utpal_SS_html_203b4334.gif
  • From esters
  • Ester http://www.meritnation.com/img/lp/1/12/5/271/959/2062/2012/11-6-09_LP_Sujata_Chem_1.12.5.12.1.5_Utpal_SS_html_m7bdfd3b4.gifCarboxylic acid
Example:
http://www.meritnation.com/img/lp/1/12/5/271/959/2062/2012/11-6-09_LP_Sujata_Chem_1.12.5.12.1.5_Utpal_SS_html_m3f26fb41.png
http://www.meritnation.com/img/lp/1/12/5/271/959/2062/2012/11-6-09_LP_Sujata_Chem_1.12.5.12.1.5_Utpal_SS_html_3da38f3b.png
Examples:
http://www.meritnation.com/img/lp/1/12/5/271/959/2062/2012/11-6-09_LP_Sujata_Chem_1.12.5.12.1.5_Utpal_SS_html_5fdba186.png


Example :
Consider the following reaction.
http://www.meritnation.com/img/directq/1.12.5.2.12.1.5/NEET_12_Chemistry_SE_Chap12_12_Anand_Shukla_ADCoA_html_m4daad154.gif
The compound X is

  • A )
ester
  • B )
Grignard reagent
  • C )
aldehyde
  • D )
acyl halide
Reaction of Grignard reagent with dry ice, CO2 followed by acidification gives carboxylic acid having one carbon atom more than that present in R group of RMgX.
http://www.meritnation.com/img/directq/1.12.5.2.12.1.5/NEET_12_Chemistry_SE_Chap12_12_Anand_Shukla_ADCoA_html_mf279551.png


Example :
Consider the following reaction.
http://www.meritnation.com/img/directq/1.12.5.2.12.1.5/NEET_12_Chemistry_SE_Chap12_12_Anand_Shukla_ADCoA_html_6e260c29.png
For the above reaction, R cannot be

  • A )
−CH3
  • B )
− CH2 CH2 CH3
  • C )
http://www.meritnation.com/img/directq/1.12.5.2.12.1.5/NEET_12_Chemistry_SE_Chap12_12_Anand_Shukla_ADCoA_html_m27b2e54f.png
  • D )
−C (CH3)3
Alkyl benzene upon reaction with alk. KMnO4 followed by acidic hydrolysis gives benzoic acid. In this reaction, entire side chain is oxidised irrespective of its length. However, only primary and secondary alkyl halides are oxidised in this process while tertiary alkyl halides do not show this reaction.
−C (CH3)3 or http://www.meritnation.com/img/directq/1.12.5.2.12.1.5/NEET_12_Chemistry_SE_Chap12_12_Anand_Shukla_ADCoA_html_4585adc6.png is tertiary, hence it is not oxidised.
Topics:Chemical Reactions of Carboxylic Acids
Reactions Involving Cleavage of O−H Bond
Acidity
  • Reactions with metals and alkalies:
http://www.meritnation.com/img/lp/1/12/5/271/959/2063/2019/12-6-09_LP_Sujata_chem_1.12.5.12.1.6_Utpal_LVN_html_m3bdb2e28.gif
  • Dissociate in water to give resonance-stabilised carboxylate anions and hydronium ion
http://www.meritnation.com/img/lp/1/12/5/271/959/2063/2019/12-6-09_LP_Sujata_chem_1.12.5.12.1.6_Utpal_LVN_html_m5c41b8e9.png
  • Effects of substituents on the acidity of carboxylic acids
http://www.meritnation.com/img/lp/1/12/5/271/959/2063/2019/12-6-09_LP_Sujata_chem_1.12.5.12.1.6_Utpal_LVN_html_m4997e8d1.png
http://www.meritnation.com/img/lp/1/12/5/271/959/2063/2019/12-6-09_LP_Sujata_chem_1.12.5.12.1.6_Utpal_LVN_html_6fa3eb5.png
  • The order of the effect of the groups in increasing acidity is
Ph < I < Br < Cl < F < CN < NO2 < CF3
Reactions Involving Cleavage of C−OH Bond
  • Formation of anhydride
http://www.meritnation.com/img/lp/1/12/5/271/959/2063/2019/12-6-09_LP_Sujata_chem_1.12.5.12.1.6_Utpal_LVN_html_m69b480de.png
  • Esterification
http://www.meritnation.com/img/lp/1/12/5/271/959/2063/2019/12-6-09_LP_Sujata_chem_1.12.5.12.1.6_Utpal_LVN_html_4ac1cc86.gif
  • Reactions with PCl5, PCl3, and SOCl2
http://www.meritnation.com/img/lp/1/12/5/271/959/2063/2019/12-6-09_LP_Sujata_chem_1.12.5.12.1.6_Utpal_LVN_html_m4e00bb16.gif
  • Reaction with ammonia
http://www.meritnation.com/img/lp/1/12/5/271/959/2063/2019/12-6-09_LP_Sujata_chem_1.12.5.12.1.6_Utpal_LVN_html_m4d03579b.png
Reactions Involving −COOH group
  • Reduction
http://www.meritnation.com/img/lp/1/12/5/271/959/2063/2019/12-6-09_LP_Sujata_chem_1.12.5.12.1.6_Utpal_LVN_html_6a9e4aee.gif
  • Decarboxylation
http://www.meritnation.com/img/lp/1/12/5/271/959/2063/2019/12-6-09_LP_Sujata_chem_1.12.5.12.1.6_Utpal_LVN_html_6d717726.gif
    • Kolbe’s electrolysis − On electrolysis of an aqueous solution of alkali metal salts of carboxylic acids, the salts undergo decarboxylation, forming hydrocarbons containing twice the number of carbon atoms present in the alkyl group of the acid.
Substitution reactions in the hydrocarbon part
  • Halogenation (Hell-Volhard-Zelinsky reaction)
http://www.meritnation.com/img/lp/1/12/5/271/959/2063/2019/12-6-09_LP_Sujata_chem_1.12.5.12.1.6_Utpal_LVN_html_m1ea1451.png
  • Ring substitution
  • Undergo electrophilic substitution reactions (except Friedel-Craft reaction)
http://www.meritnation.com/img/lp/1/12/5/271/959/2063/2019/12-6-09_LP_Sujata_chem_1.12.5.12.1.6_Utpal_LVN_html_m9fd4e20.png
http://www.meritnation.com/img/lp/1/12/5/271/959/2063/2019/12-6-09_LP_Sujata_chem_1.12.5.12.1.6_Utpal_LVN_html_665e87fb.png
Uses of Carboxylic Acids
  • Methanoic acid − In rubber, textile, dyeing, leather and electroplating industries
  • Ethanolic acid − As a solvent and as a vinegar in food industry
  • Hexanoic acid − In the manufacture of nylon-6, 6
  • Higher fatty acids − For the manufacture of soaps and detergents
  • Esters of benzoic acid − In perfumery
  • Sodium benzoate − As a food preservative


Example :
HVZ reaction involves

  • A )
reduction reaction of carboxylic group
  • B )
cleavage of O − H bond of carboxylic acid
  • C )
cleavage of C − OH bond of carboxylic acid
  • D )
substitution reaction in hydrocarbon part of carboxylic acid
HVZ is Hell − Volhard − Zelinsky reaction. In this reaction α − hydrogen of hydrocarbon part of carboxylic acid is substituted by Cl or Br atom in presence of red phosphorus.
http://www.meritnation.com/img/directq/1.12.5.2.12.1.6/NEET_12_Chemistry_SE_Chap12_12_Anand_Shukla_ADCoA_html_9481817.png


Example :
Consider the reaction scheme given below.
http://www.meritnation.com/img/directq/1.12.5.2.12.1.6/NEET_12_Chemistry_SE_Chap12_12_Anand_Shukla_ADCoA_html_m62df467d.png
Identify the compounds A to G.

Since compound A (C4H8O3) on strong heating loses it optical activity to give compound B (C4H6O2), the former can have any one of the following structures.http://www.meritnation.com/img/directq/1.12.5.2.12.1.6/NEET_12_Chemistry_SE_Chap12_12_Anand_Shukla_ADCoA_html_bde88a4.png
http://www.meritnation.com/img/directq/1.12.5.2.12.1.6/NEET_12_Chemistry_SE_Chap12_12_Anand_Shukla_ADCoA_html_1f3bc0ee.png
http://www.meritnation.com/img/directq/1.12.5.2.12.1.6/NEET_12_Chemistry_SE_Chap12_12_Anand_Shukla_ADCoA_html_7d6aa946.png
Compound Bis optically inactive.
http://www.meritnation.com/img/directq/1.12.5.2.12.1.6/NEET_12_Chemistry_SE_Chap12_12_Anand_Shukla_ADCoA_html_24c990fb.png

No comments:

Post a Comment